Classification Based on the Optimal K-Associated Network
نویسندگان
چکیده
In this paper, we propose a new graph-based classifier which uses a special network, referred to as optimal K-associated network, for modeling data. The K -associated network is capable of representing (dis)similarity relationships among data samples and data classes. Here, we describe the main properties of the K -associated network as well as the classification algorithm based on it. Experimental evaluation indicates that the model based on an optimal K -associated network captures topological structure of the training data leading to good results on the classification task particularly for noisy data.
منابع مشابه
Rice Classification and Quality Detection Based on Sparse Coding Technique
Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...
متن کاملIdentification of Houseplants Using Neuro-vision Based Multi-stage Classification System
In this paper, we present a machine vision system that was developed on the basis of neural networks to identify twelve houseplants. Image processing system was used to extract 41 features of color, texture and shape from the images taken from front and back of the leaves. The features were fed into the neural network system as the recognition criteria and inputs. Multilayer perceptron (MLP) ne...
متن کاملA Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems
In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...
متن کاملOptimizing the Grade Classification Model of Mineralized Zones Using a Learning Method Based on Harmony Search Algorithm
The classification of mineralized areas into different groups based on mineral grade and prospectivity is a practical problem in the area of optimal risk, time, and cost management of exploration projects. The purpose of this paper was to present a new approach for optimizing the grade classification model of an orebody. That is to say, through hybridizing machine learning with a metaheuristic ...
متن کاملSemi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کامل